Six New Constant Weight Binary Codes
نویسندگان
چکیده
We give six improved bounds on A(n, d, w), the maximum cardinality of a binary code of length n with minimum distance d and constant weight w.
منابع مشابه
New explicit binary constant weight codes from Reed-Solomon codes
Binary constant weight codes have important applications and have been studied for many years. Optimal or near-optimal binary constant weight codes of small lengths have been determined. In this paper we propose a new construction of explicit binary constant weight codes from q-ary ReedSolomon codes. Some of our binary constant weight codes are optimal or new. In particular new binary constant ...
متن کاملA new table of constant weight codes
A table of binary constant weight codes of length n <; 28 is presented. Explicit constructions are given for most of the 600 codes in the table; the majority of these codes are new. The known techniques for constructing constant weight codes are surveyed, and also a table is given of (unrestricted) binary codes of length J1 <; 28.
متن کاملOptimal (v, 3, 1) binary cyclically permutable constant weight codes with small v
We classify up to multiplier equivalence optimal (v, 3, 1) binary cyclically permutable constant weight (CPCW) codes with v ≤ 61. There is a one-to-one correspondence between optimal (v, 3, 1) CPCW codes, optimal cyclic binary constant weight codes with weight 3 and minimal distance 4, (v, 3; b(v − 1)/6c) difference packings, and optimal (v, 3, 1) optical orthogonal codes. Therefore the classif...
متن کاملDeterministic Construction of RIP Matrices in Compressed Sensing from Constant Weight Codes
The expicit restricted isometry property (RIP) measurement matrices are needed in practical application of compressed sensing in signal processing. RIP matrices from Reed-Solomon codes, BCH codes, orthogonal codes, expander graphs have been proposed and analysised. On the other hand binary constant weight codes have been studied for many years and many optimal or near-optimal small weight and d...
متن کاملImproved Linear Programming Bounds on Sizes of Constant-Weight Codes
Let A(n, d, w) be the largest possible size of an (n, d, w) constant-weight binary code. By adding new constraints to Delsarte linear programming, we obtain twenty three new upper bounds on A(n, d, w) for n ≤ 28. The used techniques allow us to give a simple proof of an important theorem of Delsarte which makes linear programming possible for binary codes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ars Comb.
دوره 67 شماره
صفحات -
تاریخ انتشار 2003